Related Papers in ICML 2021 (2021.07.18 - 2021.07.24)

2021/07/18 00:00:00 2021/07/18 00:00:00 paper list

Accept papers: link

时序论文一览

Anomaly detection (anomaly, outlier, out-of-distribution, one-class, Malware detection, …)

  • Near-Optimal Entrywise Anomaly Detection for Low-Rank Matrices with Sub-Exponential Noise

    Vivek Farias (MIT) · Andrew Li (Carnegie Mellon University) · Tianyi Peng (MIT)

  • Transfer-Based Semantic Anomaly Detection

    Lucas Deecke (University of Edinburgh) · Lukas Ruff (Aignostics) · Robert Vandermeulen (TU Berlin) · Hakan Bilen (University of Edinburgh)

  • Neural Transformation Learning for Deep Anomaly Detection Beyond Images

    Chen Qiu (TU Kaiserslautern/Bosch Center for Artificial Intelligence) · Timo Pfrommer (Bosch Center for Artificial Intelligence) · Marius Kloft (TU Kaiserslautern) · Stephan Mandt (University of California, Irivine) · Maja Rudolph (BCAI)

  • Event Outlier Detection in Continuous Time

    Siqi Liu (University of Pittsburgh) · Milos Hauskrecht (University of Pittsburgh)

  • Understanding Failures in Out-of-Distribution Detection with Deep Generative Models

    Lily Zhang (New York University) · Mark Goldstein (New York University) · Rajesh Ranganath (New York University)

  • Outlier-Robust Optimal Transport

    Debarghya Mukherjee (University of Michigan) · Aritra Guha (Duke University) · Justin Solomon (MIT) · Yuekai Sun (University of Michigan) · Mikhail Yurochkin (IBM Research AI)

  • DORO: Distributional and Outlier Robust Optimization

    Runtian Zhai (Carnegie Mellon University) · Chen Dan (Carnegie Mellon University) · Zico Kolter (Carnegie Mellon University / Bosch Center for AI) · Pradeep Ravikumar (Carnegie Mellon University)

  • Consistent regression when oblivious outliers overwhelm

    Tommaso d’Orsi (ETH Zurich) · Gleb Novikov (ETH Zurich) · David Steurer (ETH Zurich)

  • Fixed-Parameter and Approximation Algorithms for PCA with Outliers

    Yogesh Dahiya (The Institute of Mathematical Sciences (HBNI), Chennai, India) · Fedor Fomin (University of Bergen) · Fahad Panolan (Indian Institute of Technology Hyderabad) · Kirill Simonov (University of Bergen)

  • Generalization Bounds in the Presence of Outliers: a Median-of-Means Study

    Pierre Laforgue (University of Milan) · Guillaume Staerman (Télécom Paris) · Stephan Clémençon (Télécom Paris)

  • Can Subnetwork Structure Be the Key to Out-of-Distribution Generalization?

    Dinghuai Zhang (Mila) · Kartik Ahuja (Mila) · Yilun Xu (MIT) · Yisen Wang (Peking University) · Aaron Courville (Université de Montréal)

  • Out-of-Distribution Generalization via Risk Extrapolation (REx)

    David Krueger (MILA (University of Montreal)) · Ethan Caballero (Mila) · Joern-Henrik Jacobsen (Apple Inc.) · Amy Zhang (FAIR / UC Berkeley) · Jonathan Binas (Mila, Montreal) · Dinghuai Zhang (Mila) · Remi Le Priol (Mila, Université de Montréal) · Aaron Courville (Université de Montréal

  • Graph Convolution for Semi-Supervised Classification: Improved Linear Separability and Out-of-Distribution Generalization

    Aseem Baranwal (University of Waterloo) · Kimon Fountoulakis (University of Waterloo) · Aukosh Jagannath (University of Waterloo)

  • Accuracy on the Line: on the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization

    John Miller (University of California, Berkeley) · Rohan Taori (Stanford University) · Aditi Raghunathan (Stanford) · Shiori Sagawa (Stanford University) · Pang Wei Koh (Stanford University) · Vaishaal Shankar (UC Berkeley) · Percy Liang (Stanford University) · Yair Carmon (Tel Aviv University) · Ludwig Schmidt (Toyota Research Institute)

Time series

  • Conformal prediction interval for dynamic time-series

    Chen Xu (Georgia Institute of Technology) · Yao Xie (Georgia Institute of Technology)

  • Voice2Series: Reprogramming Acoustic Models for Time Series Classification

    Huck Yang (Georgia Tech) · Yun-Yun Tsai (Columbia University) · Pin-Yu Chen (IBM Research AI)

  • Explaining Time Series Predictions with Dynamic Masks

    Jonathan Crabbé (University of Cambridge) · Mihaela van der Schaar (University of Cambridge and UCLA)

  • Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting

    Kashif Rasul (Zalando Research) · Calvin Seward (Zalando Research) · Ingmar Schuster (Zalando Research) · Roland Vollgraf (Zalando Research)

  • Necessary and sufficient conditions for causal feature selection in time series with latent common causes

    Atalanti Mastakouri (Amazon Research Tuebingen) · Bernhard Schölkopf (MPI for Intelligent Systems Tübingen, Germany) · Dominik Janzing (Amazon)

  • Approximation Theory of Convolutional Architectures for Time Series Modelling

    Haotian Jiang (National University of Singapore) · Zhong Li (Peking University) · Qianxiao Li (National University of Singapore; IHPC, Singapore)

  • Whittle Networks: A Deep Likelihood Model for Time Series

    Zhongjie Yu (TU Darmstadt) · Fabrizio Ventola (TU Darmstadt) · Kristian Kersting (TU Darmstadt)

  • Neural Rough Differential Equations for Long Time Series

    James Morrill (University of Oxford) · Cristopher Salvi (University of Oxford) · Patrick Kidger (University of Oxford) · James Foster (University of Oxford)

  • End-to-End Learning of Coherent Probabilistic Forecasts for Hierarchical Time Series

    Syama Sundar Yadav Rangapuram (Amazon) · Lucien D Werner (California Institute of Technology) · Konstantinos Benidis (Amazon Research) · Pedro Mercado (Amazon Research) · Jan Gasthaus (Amazon Research) · Tim Januschowski (Amazon Research)

  • Z-GCNETs: Time Zigzags at Graph Convolutional Networks for Time Series Forecasting

    Yuzhou Chen (Southern Methodist University) · Ignacio Segovia (University of Texas at Dallas) · Yulia R Gel (University of Texas at Dallas)

Heterogeneous (multi-source)

  • Quasi-global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data

    Tao Lin (EPFL) · Sai Praneeth Reddy Karimireddy (EPFL) · Sebastian Stich (EPFL) · Martin Jaggi (EPFL)

  • Budgeted Heterogeneous Treatment Effect Estimation

    Tian Qin (Nanjing University) · Tian-Zuo Wang (Nanjing University) · Zhi-Hua Zhou (Nanjing University)

  • Data-Free Knowledge Distillation for Heterogeneous Federated Learning

    Zhuangdi Zhu (Michigan State University) · Junyuan Hong (Michigan State University) · Jiayu Zhou (Michigan State University)

  • Heterogeneous Risk Minimization

    Jiashuo Liu (Tsinghua University) · Zheyuan Hu (Tsinghua University) · Peng Cui (Tsinghua University) · Bo Li (Tsinghua University) · Zheyan Shen (Tsinghua University)

  • Bias-Variance Reduced Local SGD for Less Heterogeneous Federated Learning

    Tomoya Murata (NTT DATA Mathematical Systems Inc.) · Taiji Suzuki (The University of Tokyo / RIKEN)

  • Byzantine-Resilient High-Dimensional SGD with Local Iterations on Heterogeneous Data

    Deepesh Data (UCLA) · Suhas Diggavi (UCLA)

  • KD3A: Unsupervised Multi-Source Decentralized Domain Adaptation via Knowledge Distillation

    Haozhe Feng (State Key Lab of CAD&CG, Zhejiang University) · Zhaoyang You (Zhejiang University) · Minghao Chen (Zhejiang University) · Tianye Zhang (Zhejiang University) · Minfeng Zhu (State Key Lab of CAD&CG, Zhejiang University) · Fei Wu (Zhejiang University, China) · Chao Wu (Zhejiang University) · Wei Chen (State Key Lab of CAD&CG, Zhejiang University)

Graph Representation Learning

  • Explainable Automated Graph Representation Learning with Hyperparameter Importance

    Xin Wang (Tsinghua University) · Shuyi Fan (Tsinghua University) · Kun Kuang (Zhejiang University) · wenwu zhu (Tsinghua University)

  • Size-Invariant Graph Representations for Graph Classification Extrapolations

    Beatrice Bevilacqua (Purdue University) · Yangze Zhou (Purdue University) · Bruno Ribeiro (Purdue University)

  • Generative Causal Explanations for Graph Neural Networks

    Wanyu Lin (Department of Computing, The Hong Kong Polytechnic University) · Hao Lan (University of Toronto) · Baochun Li (University of Toronto)

Sequence

  • Near-Optimal Confidence Sequences for Bounded Random Variables

    Arun Kuchibhotla (Carnegie Mellon University) · Qinqing Zheng (Facebook AI Research)

  • Off-Policy Confidence Sequences

    Nikos Karampatziakis (Microsoft) · Paul Mineiro (Microsoft) · Aaditya Ramdas (Carnegie Mellon University)

  • Learning to Rehearse in Long Sequence Memorization

    Zhu Zhang (DAMO Academy, Alibaba Group,) · Chang Zhou (Alibaba Group) · Jianxin Ma (Alibaba Group) · Zhijie Lin (Zhejiang University) · Jingren Zhou (Alibaba Group) · Hongxia Yang (Alibaba Group) · Zhou Zhao (Zhejiang University)

  • Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation

    Xiaohui Chen (Tufts University) · Xu Han (Tufts University) · Jiajing Hu (Tufts University) · Francisco R Ruiz (DeepMind) · Liping Liu (Tufts University)

  • A Structured Observation Distribution for Generative Biological Sequence Prediction and Forecasting

    Eli N. Weinstein (Harvard) · Debora Marks (Harvard Medical School)

  • Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design

    yue cao (Texas A&M University) · Payel Das (IBM Research AI) · Vijil Chenthamarakshan (IBM Research) · Pin-Yu Chen (IBM Research AI) · Igor Melnyk (IBM) · Yang Shen (Texas A&M University)

  • Temporally Correlated Task Scheduling for Sequence Learning

    Xueqing Wu (University of Science and Technology of China) · Lewen Wang (Microsoft Research Asia) · Yingce Xia (Microsoft Research Asia) · Weiqing Liu (Microsoft Research) · Lijun Wu (Microsoft Research) · Shufang Xie (Microsoft Research Asia) · Tao Qin (Microsoft Research Asia) · Tie-Yan Liu (Microsoft Research Asia)

Autoencoder

  • Unified Robust Semi-Supervised Variational Autoencoder

    Xu Chen (SAS Inc)

  • MorphVAE: Generating Neural Morphologies from 3D-Walks using a Variational Autoencoder with Spherical Latent Space

    Sophie C Laturnus (University of Tübingen) · Philipp Berens (University of Tübingen)

  • Spectral Smoothing Unveils Phase Transitions in Hierarchical Variational Autoencoders

    Adeel Pervez (University of Amsterdam) · Efstratios Gavves (University of Amsterdam )

  • Autoencoder Image Interpolation by Shaping the Latent Space

    Alon Oring (IDC) · Zohar Yakhini (Herzliya Interdisciplinary Center) · Yacov Hel-Or (The Interdisciplinary Center, Herzliya)

  • BasisDeVAE: Interpretable Simultaneous Dimensionality Reduction and Feature-Level Clustering with Derivative-Based Variational Autoencoders

    Dominic Danks (Alan Turing Institute) · Christopher Yau (University of Manchester)

  • Composed Fine-Tuning: Freezing Pre-Trained Denoising Autoencoders for Improved Generalization

    Sang Michael Xie (Stanford University) · Tengyu Ma (Stanford University) · Percy Liang (Stanford University)

  • Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

    Jaehyeon Kim (Kakao Enterprise) · Jungil Kong (Kakao Enterprise) · Juhee Son (Kakao Enterprise)

Recurrent Neural Network

  • Training Recurrent Neural Networks via Forward Propagation Through Time

    Anil Kag (Boston University) · Venkatesh Saligrama (Boston University)

  • Re-understanding Finite-State Representations of Recurrent Policy Networks

    Mohamad H Danesh (Oregon State University) · Anurag Koul (Oregon State University) · Alan Fern (Oregon State University) · Saeed Khorram (Oregon State University)

  • UnICORNN: A recurrent model for learning very long time dependencies

    T. Konstantin Rusch (ETH Zurich) · Siddhartha Mishra (ETH Zurich)

Correlation analysis (association analysis)

  • Inferring serial correlation with dynamic backgrounds

    Song Wei (Georgia Tech) · Yao Xie (Georgia Institute of Technology) · Dobromir Rahnev (Georgia Tech)

  • Connecting Optimal Ex-Ante Collusion in Teams to Extensive-Form Correlation: Faster Algorithms and Positive Complexity Results

    Gabriele Farina (Carnegie Mellon University) · Andrea Celli (Facebook CDS) · Nicola Gatti (Politecnico di Milano) · Tuomas Sandholm (Carnegie Mellon University)

  • Local Correlation Clustering with Asymmetric Classification Errors

    Jafar Jafarov (University of Chicago) · Sanchit Kalhan (Northwestern University) · Konstantin Makarychev (Northwestern University) · Yury Makarychev (Toyota Technological Institute at Chicago)

  • Differentially Private Correlation Clustering

    Mark Bun (Boston University) · Marek Elias (CWI) · Janardhan Kulkarni (Microsoft Research)

  • A theory of high dimensional regression with arbitrary correlations between input features and target functions: sample complexity, multiple descent curves and a hierarchy of phase transitions

    Gabriel Mel (Stanford University) · Surya Ganguli (Stanford)

  • Correlation Clustering in Constant Many Parallel Rounds

    Vincent Cohen-Addad (Google) · Silvio Lattanzi (Google) · Slobodan Mitrović (MIT) · Ashkan Norouzi-Fard (Google) · Nikos Parotsidis (Google) · Jakub Tarnawski (Microsoft Research)

  • Lottery Ticket Preserves Weight Correlation: Is It Desirable or Not?

    Ning Liu (Midea Group) · Geng Yuan (Northeastern University) · Zhengping Che (Didi Chuxing) · Xuan Shen (Northeastern University) · Xiaolong Ma (Northeastern University) · Qing Jin (Northeastern University) · Jian Ren (Snap Inc.) · Jian Tang (AI Innovation Center, Midea Group) · Sijia Liu (Michigan State University) · Yanzhi Wang (Northeastern University)

  • Accuracy on the Line: on the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization

    John Miller (University of California, Berkeley) · Rohan Taori (Stanford University) · Aditi Raghunathan (Stanford) · Shiori Sagawa (Stanford University) · Pang Wei Koh (Stanford University) · Vaishaal Shankar (UC Berkeley) · Percy Liang (Stanford University) · Yair Carmon (Tel Aviv University) · Ludwig Schmidt (Toyota Research Institute)

Causal analysis

  • Causal Curiosity: RL Agents Discovering Self-supervised Experiments for Causal Representation Learning

    Sumedh Sontakke (University of Southern California) · Arash Mehrjou (Max Planck Institute for Intelligent Systems) · Laurent Itti (University of Southern California) · Bernhard Schölkopf (MPI for Intelligent Systems Tübingen, Germany)

  • Integer Programming for Causal Structure Learning in the Presence of Latent Variables

    Rui Chen (University of Wisconsin-Madison) · Sanjeeb Dash (IBM Research) · Tian Gao (IBM Research)

  • How and Why to Use Experimental Data to Evaluate Methods for Observational Causal Inference

    Amanda Gentzel (University of Massachusetts Amherst) · Purva Pruthi (University of Massachusetts Amherst) · David Jensen (University of Massachusetts Amherst)

  • Model-Free and Model-Based Policy Evaluation when Causality is Uncertain

    David Bruns-Smith (UC Berkeley)

  • Domain Generalization using Causal Matching

    Divyat Mahajan (Microsoft Research India) · Shruti Tople (Microsoft Research) · Amit Sharma (Microsoft Research)

  • Estimating Identifiable Causal Effects on Markov Equivalence Class through Double Machine Learning

    Yonghan Jung (Purdue University) · Jin Tian (Iowa State University) · Elias Bareinboim (Columbia)

  • Valid Causal Inference with (Some) Invalid Instruments

    Jason Hartford (University of British Columbia) · Victor Veitch (Google; University of Chicago) · Dhanya Sridhar (Columbia University) · Kevin Leyton-Brown (University of British Columbia)

  • Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

    Andrew Jesson (University of Oxford) · Sören Mindermann (University of Oxford) · Yarin Gal (University of Oxford) · Uri Shalit (Technion)

  • Regularizing towards Causal Invariance: Linear Models with Proxies

    Michael Oberst (MIT) · Nikolaj Thams (University of Copenhagen) · Jonas Peters (University of Copenhagen) · David Sontag (Massachusetts Institute of Technology)

  • Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction

    Afsaneh Mastouri (University College London) · Yuchen Zhu (University College London) · Limor Gultchin (University of Oxford) · Anna Korba (CREST/ENSAE) · Ricardo Silva (University College London) · Matt J. Kusner (University College London) · Arthur Gretton (Gatsby Computational Neuroscience Unit) · Krikamol Muandet (Max Planck Institute for Intelligent Systems)

  • Causality-aware counterfactual confounding adjustment as an alternative to linear residualization in anticausal prediction tasks based on linear learners

    Elias Chaibub Neto (Sage Bionetworks)


Clustering

About distribution

Interpretable [Understanding, explanation, Attribution …]